C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Differential Equations Subject Code: 5SC01DIE1 Semester: 1 Date: 14/03/2019

Branch: M.Sc. (Mathematics) Time: 02:30 To 05:30

Marks: 70

(07)

(02)

(02)

(01)

(01)

(14)

Instructions:

Q-1

O-2

Q-3

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the following questions a. Determine the radius of convergence of (1 − x)⁻¹. b. Find the value of ∫¹₋₁ P²₃(x) dx. State the result you use. c. Write generating function of Bessel's function.

- **d.** Write Rodrigue's formula.
- e. Bessel's function $J_n(x)$ is even function if n is odd. Determine whether (01) the statement is True or False.

Q-2 Attempt all questions

b.

a. Find the power series solution about x = 0 of the equation (06)

$$y' + xy' + y = 0, y(0) = 3, y'(0) = -7.$$

Using the method of variation of parameters, solve

fiation of parameters, solve (05)

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1+a^x}.$$

c. Show that
$$x = 2$$
 is an irregular singular point of the equation

$$2x(x-2)^2y'' + 3xy' + (x-2)y = 0.$$
(03)

OR

Attempt all questions (14) a. Find the power series solution near x = 0 of the equation $(1 - x^2)y'' - (06)$ 2xy' + p(p+1)y = 0, where p is an arbitrary constant.

b. Using the method of variation of parameters find the general solution of (05) the differential equation $(D^2 - 2D + 1)y = 3x^{\frac{3}{2}}e^x$.

c. Define: Singular point, Regular singular point and irregular singular point. (03) Attempt all questions (14)

- **a.** Use the method of Frobenius to find one solution near x = 0 of x(x-1)y'' + (3x-1)y' + y = 0. (06)
- **b.** Show that (05)

1)
$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x),$$

2) $J'_n(x) = J_{n-1}(x) - \frac{n}{x} J_n(x).$

Page 1 of 3

	c.	Express $2 - 3x + 4x^2$ in terms of Legendre's polynomials. OR	(03)
Q-3		Attempt all questions	(14)
	a.	Determine the values of $J_{\frac{1}{2}}(x)$ and $J_{-\frac{1}{2}}(x)$.	(06)
	b.	Prove that $(n + 1)P_{n+1}(x)^2 = (2n + 1)xP_n(x) - nP_{n-1}(x), \forall n \ge 2.$	(05)
	c.	Expand $f(x)$ in the form $\sum_{n=0}^{\infty} c_n P_n(x)$, where $f(x) = \begin{cases} 0, -1 < x < 0 \\ x, 0 < x < 1 \end{cases}$.	(03)
		SECTION – II	
Q-4		Attempt the following questions	(07)
	a.	Form the partial differential equation by eliminating the arbitrary constants a and bfromlog $(az - 1) = x + ay + b$.	(02)
	b.	Find a complete integral of $pqz = p^2(xq + p^2) + q^2(yp + q^2)$.	(02)
	c.	Define: Quasi-linear equation.	(01)
	a.	Write Lagrange equation	(01)
	с.	white Lagrange equation.	(01)
Q-5		Attempt all questions	(14)
-	a.	Find a complete integral of $p^2z + q^2 - 4 = 0$ by Jacobi's method.	(06)
	b.	Prove that if \vec{X} is a vector such that $\vec{X} \cdot curl \vec{X} = 0$ and μ is an arbitrary	(05)
		function of x, y, z, then $\mu \vec{X} \cdot curl \ \mu \vec{X} = 0$.	
	c.	Find a complete integral of $p - e^q = 0$.	(03)
0.5		OR	(14)
Q-5	9	Attempt all questions Show that the Pfaffian differential equation	(14)
	a.	show that the Frankan differential equation vzdx + 2xzdy - 3xydz = 0	(00)
		isintegrable and find its solution.	
	b.	Prove that a necessary and sufficient condition that there exists between	(05)
		two functions $u(x, y)$ and $v(x, y)$ a relation $F(u, v) = 0$, not involving x	
		and y explicitly is that $\frac{\partial(u,v)}{\partial(x,v)} = 0.$	
	c.	Find a complete integral of $z^2p^2 + q^2 - p^2q = 0$.	(03)
Q-6		Attempt all questions	(14)
	a.	Prove that	(06)
		1) $(1-x)^n = F(-n, 1; 2; -x),$	
		2) $\lim_{\beta \to \infty} F\left(\alpha, \beta; \gamma; \frac{x}{\beta}\right) = F(\alpha, \gamma; x),$	
		3) $\frac{d}{dx}[F(\alpha,\beta;\gamma;x)] = \frac{\alpha\beta}{\gamma}F(\alpha+1,\beta+1;\gamma+1;x).$	
	b.	Using Picard's method of successive approximation, find a sequence of	(05)
		two functions which approach solution of the initial value problem,	
		$\frac{dy}{dx} = e^x + y^2, y(0) = 1.$	
	c.	Eliminate arbitrary function f from $z = e^{y} f(x + y)$.	(03)
		OR	

Q-6 Attempt all questions

(14)

- Show that the equations f(x, y, p, q) = 0 and g(x, y, p, q) = 0 are compatible if $\frac{\partial(f,g)}{\partial(x,p)} + \frac{\partial(f,g)}{\partial(y,q)} = 0$. Verify that the equations p = P(x, y) and (06)a. q = Q(x, y) are compatible if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. (05)
- **b.** Solve: $y^2p xyq = x(z 2y)$. **c.** Form a partial differential equation by eliminate arbitrary function f(03) from $z = f\left(\frac{y}{x}\right)$.

